

Interpretation:	Permit use of brake horsepower to model VFD ventilation fan power
Designation:	IR 301-2019-037
Approved:	March 3, 2025 by RESNET SDC 300
Effective Date:	April 3, 2025

Reference:

Standard	ANSI / RESNET / ICC 301-2019 and 301-2022
Page Number(s):	
Sections(s):	4.2 Energy Rating Reference Home and Rated Home
	Configuration, and Normative Appendix B
Table(s):	Inspection Procedure for Minimum Rated Features
Relating to:	Building Element: Dwelling Unit Mechanical Ventilation System(s)

Request from:

Name:	Zachary Vergata								
Affiliation:	Steven Winter Associa	ates, Inc.							
Address:	55 N Water St., Suite	1							
City: <u>Norw</u>	<u>alk</u> State:	<u></u>	Zip:	06854					
Email:zvergata@swinter.com									

Background Statement: *Provided by person requesting the interpretation.*

VFD fan motors may be rated in both brake horsepower and horsepower. Horsepower will represent the sizing of the motor and brake horsepower will represent the power at a set speed and/or design condition. Some ventilation fan manufacturers use brake horsepower to present fan power at set specific CFMs for their VFD controlled units. This applies to singular fans, such as a central rooftop exhaust fan, and combo units, such as an ERV with a supply and exhaust fan. For example, below, Figure 1 shows a Greenheck rooftop exhaust fan with brake horsepower listed at specific static pressure conditions and CFM settings, and Figure 2 shows a CFM settings.

Setting the **Standards** for **Home Energy Efficiency**

All dime	ensions in i	nches <i>(mil</i>	limeters).	*May be gre	ater dependi	ing on motor.		Direct Drive RPI	м				
^Weigh	t shown is	largest ca	taloged (Open Drip-Pi	roof motor.		Е-1050 RPM G-1300 RPM		300 RPM	D-1550 R	рм VG	VG-1725 RPM	
		_					O 1 11	. .					
Direct	Motor	Fan					Static	Pressure in	Inches wo	3			
Drive	нр	RPM		0	0.1	0.125	0.15	0.2	0.25	0.3	0.375	0.5	0.625
090			0514	500	444	400	000	054	000				
VG-	E 4 (40	1050	CFIM	520	441	420	398	351	293				
1/10	E-1/40	1050	внр	0.01	0.02	0.02	0.02	0.02	0.02				
			Sones	4	3.9	3.9	4	4.1	4.2				
			CFM	644	580	565	549	515	478	440	373		
	G-1/25	25 1300	BHP	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.05		
	1		Sones	5.4	5.4	5.4	5.4	5.4	5.5	5.5	5.6		
Ģ	G		CFM	768	714	701	688	662	633	605	557	473	338
R.	D-1/15	1550	BHP	0.05	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.08	0.07
R			Sones	7.6	7.5	7.5	7.5	7.5	7.4	7.4	7.4	7.4	7.8
		1725	CFM	855	806	794	782	759	735	709	671	600	522
			BHP	0.06	0.07	0.07	0.08	0.08	0.08	0.09	0.09	0.10	0.11
12			Sones	9.7	9.5	9.5	9.5	9.5	9.4	9.4	9.2	9.1	9.1
095													
			CFM	717	606	570	534	468	389	290			
VG-	E-1/30	1050	BHP	0.03	0.03	0.04	0.04	0.04	0.04	0.03			
1/6			Sones	5.4	4.5	4.5	4.5	4.4	4.5	4.6			
			CFM	888	802	780	754	695	640	586	493	184	
N	G-1/12	1300	BHP	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.05	
			Sones	7.6	6.8	6.7	6.6	6.5	6.4	6.4	6.4	6.8	
5			CFM	1059	987	969	950	912	863	814	745	623	474
4	D-1/8	1550	BHP	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.12	0.12	0.11
₹.			Sones	9.6	9.4	9.3	9.2	9	8.8	8.7	8.7	8.7	8.7
			CFM	1179	1114	1098	1081	1048	1013	969	903	800	688
		1725	BHP	0.13	0.14	0.14	0.14	0.15	0.15	0.15	0.16	0.16	0.16
			Sones	11.4	11.4	11.4	11.5	11.4	11.2	11	10.9	11.3	11.3

Figure 1 – Greenheck G-090-VG (exhaust fan) air flow performance chart

AIRFLOW PERFORMANCE

						Exte	ernal Stati	c Pressure	e (Inches V	Vater Colu	mn)					
Blower RPM	0.25		0.50		0.75		1.00		1.25		1.50		1.75		2.00	
	SCFM	SCFM BHP		SCFM BHP		BHP	SCFM	BHP	SCFM	BHP	SCFM BHP		SCFM BHP		SCFM	BHP
800																
900	642	0.4														
1000	829	0.4	558	0.4												
1100	1016	0.5	776	0.5												
1200	1200	0.7	986	0.6	739	0.5										
1300	1381	0.9	1191	0.8	973	0.7	721	0.6								
1400	1562	1.1	1392	1.0	1199	0.9	977	0.7	725	0.6						
1500	1743	1.3	1590	1.2	1419	1.1	1223	1.0	1000	0.8	750	0.7				
1600	1923	1.7	1785	1.5	1632	1.4	1459	1.3	1263	1.1	1041	1.0	795	0.8	534	0.7
1700			1975	1.9	1836	1.7	1683	1.6	1511	1.4	1317	1.3	1099	1.1	859	0.9

Figure 2 – Renewaire HE2XRT (ERV) air flow performance chart

Currently, section 4.2.2 of ANSI/RESNET/ICC 301 permits fan motor power to be calculated using only horsepower. This presents an issue when modeling VFD ventilation fans whom' s design conditions, static pressure and set RPM, result in an operational brake horsepower lower than the motor horsepower. As currently written, ANSI/RESNET/ICC 301 would force that fan power be calculated using the motor size or horsepower. This results in overestimating the power consumption of VFD controlled ventilation equipment, since the horsepower rating of the motor may be significantly higher than installed power, depending on design conditions. Below, Figures 3 and 4 illustrate a 47.6% difference between system Watts/CFM when using horsepower or brake horsepower to calculate fan power.

	ENERGY RECOVERY VENTILATOR SCHEDULE																						
TAG MODEL	OUTDO	OOR AIR	PERFOR	MANCE	EXHAUST AIR PERFORMANCE				ELECTRICAL				WEIGHT	WEIGHT		SUMMER PERFORMANCE			INTER P	10050000150			
	MODEL	CFM	E.S.P.	HP	BHP	CFM	E.S.P.	HP	BHP	VOLTS	PHASE	HZ	MCA	MOCP	LBS	LBS W/CFN	E.A.T. °F	L.A.T. °F	EFFECTIVENESS SENS / TOTAL	E.A.T. °F	L.A.T. °F	EFFECTIVENESS SENS / TOTAL	ACCESSORIES
ERV-1	HE-2XJRTV-S35VV	1,460	1.0	2.0	1.25	2,000	1.0	2.0	1.3	208	3	60	14.9	20	516	1.3	91	80	70.4% / 51.2%	4	51	70.4% / 68.5%	ALL
ERV-1	HE-2XJRTV-S35VV	1,460	1.0	2.0	1.25	2,000	1.0	2.0	1.3	208	3	60	14.9	20	516	1.3	91	°F 80	70.4% / 51.2%	4	°F 51	70.4% / 68.5%	ALL

Figure 3 - ERV Schedule showing HP vs. BHP

Unit	Total Watts	Total W/CFM	Total Watts	Total W/CFM
	using HP	using HP	using BHP	using BHP
Renewaire HE-2XJRTV-S35W	4590.8	1.3	2926.6	0.8

Figure 4 – Calculated Watt/CFM of Figure 3 ERV

Section G3.2.2.8 of ASHRAE 90.1-2022 provides equations for converting brake horsepower to watts. See Figure 5 for reference. Functionally, it is the same equation that ANSI/RESNET/ICC 301 lists in Section 4.2.2 Normative Note 4, "Fan motors rating in horsepower shall be converted to Watts by multiplying by 746 and dividing by fan motor efficiency", but with brake horsepower substituted for horsepower.

Figure 5 – ASHRAE 90.1-2022 System fan power calculation equations

Proposed Interpretation: *Provided by person requesting the interpretation.*

For fans with manufacturer published brake horsepower at predefined fan speeds, the brake horsepower that most closely matches the total system ventilation rate can be permitted to be used to calculate equipment power. It can be converted to Watts by multiplying brake horsepower by 746 and dividing by fan motor efficiency.

SDC Response:

Is the proposed interpretation correct? _____Yes ___X___No

SDC Comments:

Within <u>Table 4.2.2(1) of ANSI/RESNET/ICC 301-2022</u>, table note 'm' and 'n' elaborate on the available options to determine "Dwelling Unit Mechanical Ventilation System fan power" for the Rated Home.

Where the DUMV system serves multiple dwelling units, note 'n' offers a default of 1 Watt/cfm where fan power cannot be determined and Normative Note 4 offers the following alternative calculation for fan power:

"4. (Normative Note) Fan motors rating in horsepower shall be converted to Watts by multiplying by 746 and dividing by fan motor efficiency. Where fan motor efficiency is unknown, use 0.65 for single-phase and 0.75 for 3-phase motors."

While it is understood that other modeling protocols like ASHRAE 90.1 Appendix G use this same equation with "brake" horsepower rather than "horsepower", a proposed change to Standard 301 via an Addendum would be required to specifically accommodate the use of "brake" horsepower.

The current intent of the Standard is to use horsepower (HP) to convert to Watts, or use the other available W/cfm defaults, or determine fan power by "observation" via direct measurement of Watts, as allowed by Section 4.5.1.